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Figure 1: Examples edited by UniEdit. Our solution supports both video editing in the time
axis (i.e., from playing guitar to eating or waving) and various video appearance editing scenarios
(i.e., stylization, rigid/non-rigid object replacement, background modification). We encourage the
readers to watch the videos on our project page.

ABSTRACT

Recent advances in text-guided video editing have showcased promising results
in appearance editing (e.g., stylization). However, video motion editing in the
temporal dimension (e.g., from eating to waving), which distinguishes video edit-
ing from image editing, is underexplored. In this work, we present UniEdit, a
tuning-free framework that supports both video motion and appearance editing by
harnessing the power of a pre-trained text-to-video generator within an inversion-
then-generation framework. To realize motion editing while preserving source
video content, based on the insights that temporal and spatial self-attention layers
encode inter-frame and intra-frame dependency respectively, we introduce auxiliary
motion-reference and reconstruction branches to produce text-guided motion and
source features respectively. The obtained features are then injected into the main
editing path via temporal and spatial self-attention layers. Extensive experiments
demonstrate that UniEdit covers video motion editing and various appearance
editing scenarios, and surpasses the state-of-the-art methods. Our code will be
publicly available.
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1 INTRODUCTION

The advent of pre-trained diffusion-based [28, 60] text-to-image generators [56, 57, 55] has revo-
lutionized the fields of design and filmmaking, opening new vistas for creative expression. These
advancements, underpinned by seminal works in text-to-image synthesis, have paved the way for inno-
vative text-guided editing techniques for both images [47, 26, 4, 5] and videos [73, 6, 44, 78, 19, 53].
Such techniques not only enhance creative workflows but also promise to redefine content creation
within these industries.

Video editing, in contrast to image editing, introduces the intricate challenge of ensuring frame-wise
consistency. Efforts to address this challenge have led to the development of methods that leverage
shared features and structures with the source video [6, 44, 40, 78, 53, 7, 36, 70, 20] through an
inversion-then-generation pipeline [47, 60], exemplified by Pix2Video’s approach [6] to consistent
appearance editing across frames. To transfer the edited appearance from the anchor frame to the
remaining frames consistently, it employs a pre-trained image generator and extends the self-attention
layers to cross-frame attention to generate each remaining frame. Despite these advancements in
performing video appearance editing (e.g., stylization, object appearance replacement, etc.), these
methodologies fall short in editing video motion (e.g., replacing the movement of playing guitar with
waving), hampered by a lack of motion priors and limited control over inter-frame dependencies,
underscoring a critical gap in video editing capabilities.

Previous attempts [73, 49] at video motion editing through fine-tuning a pre-trained generator on
the given source video and then editing motion through text guidance. Although effective, they
necessitate a delicate balance between the generative prowess of the model and the preservation of
the source video’s content. This compromise often leads to restricted motion diversity and unwanted
content variations. In response, our work aims to explore a tuning-free framework that adeptly
navigates the complexities of editing both the motion and appearance of videos. To achieve this, we
identify three technical challenges: 1) it is non-trivial to incorporate the text-guided motion into the
source content, as directly applying video appearance editing [53, 20] or image editing [5] schemes
leads to undesirable results (as shown in Fig. 5); 2) preserving the non-edited content of the source
video; 3) inheriting the spatial structure of the source video during appearance editing.

Our solution, UniEdit, harnesses the power of a pre-trained text-to-video generator (e.g., LaVie [71])
within an inversion-then-generation framework [47], tailored to overcome the identified challenges.
Particularly, we introduce three key innovations: 1) To inject text-guided motion into the source
content, we highlight the insight that the temporal self-attention layers of the generator encode
the inter-frame dependency. Acting in this way, we introduce an auxiliary motion-reference branch
to generate text-guided motion features, which are then injected into the main editing path via
temporal self-attention layers. 2) To preserve the non-edited content of the source video, motivated
by the image editing technique [5], we follow the insight that the spatial self-attention layers of the
generator encode the intra-frame dependency. Therefore, we introduce an auxiliary reconstruction
branch, and inject the features obtained from the spatial self-attention layers of the reconstruction
branch into the main editing path. 3) To retain the spatial structure during the appearance editing, we
replace the spatial attention maps of the main editing path with those in the reconstruction branch.

To our knowledge, UniEdit is the first to explore the task of text-guided, tuning-free video motion
editing. In addition, its unified architecture not only facilitates a wide array of video appearance
editing tasks, as shown in Fig. 1, but also empowers image-to-video generators for zero-shot text-
image-to-video generation. Through comprehensive experimentation, we demonstrate UniEdit’s
superior performance relative to existing state-of-the-art methods.

2 RELATED WORKS

2.1 VIDEO GENERATION

Researchers have achieved video generation with generative adversarial networks [65, 58, 69],
language models [77, 80], or diffusion models [30, 59, 27, 25, 3, 68, 81, 21, 71, 8, 54, 31, 79]. To
make the generation more controllable, endeavors have also incorporated additional structure guidance
(e.g., depth map) [18, 10, 83, 11, 22, 72], or conducted customized generation [73, 75, 37, 84, 66, 46].
These models have generally learned real-world video distribution from large-scale data, and achieved
promising results on text-to-video or image-to-video generation. Based on their success, we leverage
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the learned prior in the pre-trained model to achieve tuning-free video motion and appearance editing.

2.2 VIDEO EDITING

Tuning-Free Appearance Editing Video appearance editing [14, 38, 12, 67], like turning a video
into the style of Van Gogh, aims to produce a new video aligned with the appearance in editing
instructions while maintaining the structure of the source video. Inspired by approaches in image
editing [26, 5], a line of studies [53, 6, 53, 40, 36, 70] perform tuning-free video appearance editing
by leveraging the T2I models with self-attention manipulation and inter-frame propagation to ensure
consistency. Follow-up studies leverage the edit-then-propagate framework with neatest-neighbor
field [20], estimated optical flow [78], or temporal deformation field [51]. AnyV2V [42] innovatively
decomposes the video editing task into two sub-tasks: image editing and video-referenced 12V
generation, therefore supporting various editing tasks by replacing the image editing tool. The
primary difference with UniEdit is that UniEdit employs an end-to-end pipeline. Flatten [13] extracts
optical flow from the source video and designs flow-guided attention to improve visual consistency.
Though effectively enhance consistency in appearance editing, it’s not suitable for motion editing,
where the optical flow of the edited video should not be consistent with the source video.

Training-Based Appearance Editing Meanwhile, previous work [19, 44] also explored fine-tuning
a pre-trained generation model tailored for the video editing task. Video-P2P [44] achieved local
editing via video-specific fine-tuning. I2VEdit [52] leverages image editing approaches to improve
video editing performance and elaborately designs motion alignment training to enhance temporal
consistency, which is inherently incompatible with motion editing. Moreover, approaches trained on
single input video could lead to inferior performance due to the overfitting.

Motion Editing Recent studies have also explored video motion editing with text guidance [73,
49], user-provided motion [35, 61, 17], or specific motion representation [50, 62, 39, 24]. For
example, Dreamix [49] proposed fine-tuning a pre-trained text-to-video model with mixed video-
image reconstruction objectives for each source video. Then the editing is realized by conditioning
the fine-tuned model on the given target prompt. MoCA [76] decoupled the video into the first-
frame appearance and the optical flow, and trained a diffusion model to generate video conditioned
on the first frame and the text. However, it struggled to preserve the non-edited motion (e.g.,
background dynamics) as it generates the entire motion from the text. ReVideo [50] successfully
decouples content and motion and achieves precise trajectory-based motion control. Different from
the aforementioned approaches that require fine-tuning or user-provided motion input, we are the first
to achieve tuning-free motion and appearance editing with text guidance only.

3 PRELIMINARIES: VIDEO DIFFUSION MODELS

Overall Architecture Modern text-to-video (T2V) diffusion models typically extend a pre-trained
text-to-image (T2I) model [56] to the video domain with the following adaptations. 1) Introducing
additional temporal layers by inflating 2d convolutional layers to 3d form, or adding temporal
self-attention layers [64] to model the correlation between video frames. 2) Due to the extensive
computational resources for modeling spatial-temporal joint distribution, these works typically
first train video generation models on low spatial and temporal resolutions, and then upsampling
the generated results with cascaded models. 3) Other improvements like efficiency [1], training
strategy [21], or additional control signals [18], etc. During inference, given standard Gaussian
distribution zr ~ N(0, 1), the denoising UNet is used to perform 7' denoising steps to obtain the
outputs [28, 60]. If the model is trained in latent space [56], a decoder is employed to reconstruct
videos from the latent domain.

Attention Mechanisms In particular, for each block of the denoising UNet, there are four basic
modules: a convolutional module, a spatial self-attention module (SA-S), a spatial cross-attention
module (CA-S), and a temporal self-attention module (SA-T). Formally, the attention operation [64]

can be formulated as: -

Vd

where @ (query), K (key), V (value) are derived from inputs, and d is the dimension of hidden states.

attn(Q, K,V) = softmax( WV, )

Intuitively, CA-S is in charge of fusing semantics from the text condition, SA-S models the intra-
frame dependency, SA-T models the inter-frame dependency and ensures the generated results are
temporally consistent. We leverage these intuitions in our designs as elaborated below.
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Figure 2: Overview of UniEdit. It follows an inversion-then-generation pipeline and consists of a

, an auxiliary and an auxiliary . The
reconstruction branch produces source features for content preservation, and the motion-reference
branch yields text-guided motion features for motion injection. The source features and motion
features are injected into the main editing path through spatial self-attention (SA-S) and temporal
self-attention (SA-T) modules respectively (Sec. 4.1). We further introduce spatial structure control
to retain the coarse structure of the source video (Sec. 4.2).

4 UNIEDIT

Method Overview. As shown in Fig. 2, our main editing path is based on an inversion-then-
generation pipeline: we use the latent after DDIM inversion [60] as the initial noise z7', then perform
denoising process starting from z7 with the pre-trained UNet conditioned on the target prompt P;. For
motion editing, to achieve source content preservation and motion control, we propose to incorporate
an auxiliary reconstruction branch and an auxiliary motion-reference branch to provide desired source
and motion features, which are injected into the main editing path to achieve content preservation and
motion editing (as shown in Fig. 3). We propose the pipeline of motion editing and appearance editing
in Sec. 4.1 & Sec. 4.2 respectively. To further alleviate the background inconsistency, we introduce
a mask-guided coordination scheme in Sec. 4.3. We also extend UniEdit to text-image-to-video
generation (TI2V) in Sec. 4.4.

4.1 TUNING-FREE VIDEO MOTION EDITING

Content Preservation on SA-S Modules. One of the key challenges of editing tasks is to inherit
the original content (e.g., textures and background) in the source video. To this end, we introduce
an auxiliary reconstruction branch. The reconstruction path starts from the same inversed latent
zr similar to the main editing path, and then conducts the denoising process with the pre-trained
UNet conditioned on the source prompt P to reconstruct the original frames. As verified in image
editing [63, 26, 5], the attention features in the denoising model during reconstruction contain the
content of the source video. Hence, we inject attention features of the reconstruction path into the
main editing path on spatial self-attention (SA-S) layers for content preservation. At denoising step t,
the attention operation of the [-th SA-S module in the main editing path is formulated as:

attn(Q,K,V’“), t<toandl>L,

SA-SLy = 2
edit {attn(Q,K, V), otherwise, @)

where @), K, V are the features in the main editing path, V" refer to the value feature of the
corresponding SA-S layer in the reconstruction branch, ¢ty = 50 and L = 10 are hyper-parameters
following previous work [5]. By replacing the value of spatial features, the video synthesized by
the main editing path retains the non-edited characters (e.g., identity and background) of the source
video, as exhibited in Fig. 7a. Unlike previous video editing works [40, 32] which introduces a
cross-frame attention mechanism (i.e., using the key and value of the first/last frame), we implement
Eq. 2 frame-wisely to better tackle source video with large dynamics.

'For real source video, we set source prompt to null during both forward and inversion process to achieve
high-quality reconstruction [48].
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Motion Injection on SA-T Modules. After implementing the content-preserving technique intro-
duced above, we can obtain an edited video with the same content in the source video. However, it
is observed that the output video could not follow the text prompt P, properly. A straightforward
solution is to increase the value of L so that balancing between the impact of injected information and
the conditioned text prompt. Nevertheless, this could result in a content mismatch with the original
source video in terms of structures and textures.

To obtain the desired motion without sacrificing content consistency, we propose to guide the main
editing path with reference motion. Concretely, an auxiliary motion-reference branch (which also
starts from the inversed latent zr) is involved during the denoising process. Different from the
reconstruction branch, the motion-reference branch is conditioned on the target prompt P;, which
contains the description of the desired motion. To transfer the motion into the main editing path, our
core insight here is that temporal layers model the inter-frame dependency of the synthesized video
clip (as shown in Fig. 6). Motivated by the observations above, we design the attention map injection
on temporal self-attention layers of the main editing path:

SA-TLy, = attn(Q™, K™, V) (3)

where Q™ and K™ refer to the query and key of the motion-reference branch, note that we replace
the query and key of SA-T modules in the main editing path with those in the motion-reference
branch on all layers and denoising steps. It’s observed that the injection of temporal attention maps
can effectively facilitate the main editing path to generate motion aligned with the target prompt.
To better fuse the motion with the content in the source video, we also implement spatial structure
control (refer to Sec. 4.2) on the main editing path and motion-reference branch in the early steps.

4.2 TUNING-FREE VIDEO APPEARANCE EDITING

In Sec. 4.1, we introduce the pipeline of UniEdit SAS SAT

for video motion editing. In this subsection, g o Kk vr o Kk v g
we aim to perform appearance editing (e.g., a a
style transfer, object replacement, background

changing) via the same framework. In general, g 0 K v 2 0 kv g
there are two main differences between appear- 3 @ 3
ance editing and motion editing. Firstly, ap-

pearance editing does not require changing the g om | km ym on | km| [ ym g

inter-frame relationships. Therefore, we remove
the motion-reference branch and corresponding
motion injection mechanism from the motion
editing pipeline. Secondly, the main challenge
of appearance editing is to maintain the struc-
tural consistency of the source video. To address
this, we introduce spatial structure control be-
tween the main editing path and the reconstruc-

Content Preservation Motion Injection Structure Control

Figure 3: Detailed illustration of the relation-

ship between the , the auxiliary
and the auxiliary

. The content preservation, motion

tion branch injection and spatial structure control are achieved

) by the fusion of @ (query), K (key), V (value) fea-

Spatial Structure Control on SA-S Modules. tures in sp.atial self-attention (SA-S) and temporal
. . .. self-attention (SA-T) modules.

Previous approaches on video appearance edit-

ing [78, 20] mainly realize spatial structure con-

trol with the assistance of additional network [82]. When the auxiliary control model fails, it may
result in inferior performance in preserving the structure of the original video. Alternatively, we sug-
gest extracting the layout information of the source video from the reconstruction branch. Intuitively,
the attention maps in spatial self-attention layers encode the structure of the synthesized video, as
verified in Fig. 6. Hence, we replace the query and key of SA-S module in the main editing path with
those in the reconstruction branch:

o {attn(Q’”,K’",V)7 t <ty

A-SL = 4
SA-Seai attn(Q, K,V), otherwise, @

where Q" and K" refer to the query and key of the reconstruction branch, ¢; is used to control the
extent of editing. It is worth mentioning that the effect of spatial structure control is distinct from the
content preservation mechanism in Sec. 4.1. Take stylization as an example, the proposed structure
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control in Eq. 4 only ensures consistency in terms of each frame’s composition, while enabling the
model to generate the required textures and styles based on the text prompt. On the other hand,
the content preservation technique inherits the textures and style of the source video. Therefore,
we use structure control instead of content preservation for appearance editing. In addition, using
the proposed structure control technique in motion editing can make the layout of the output video
similar to the source video (shown in Fig. 12b in Appendix). Users have the flexibility to adjust the
consistency between the edited video and the source video layout based on their specific requirements.

4.3 MASK-GUIDED COORDINATION (OPTIONAL)

To further improve the editing performance, we suggest leveraging the foreground/background
segmentation mask M to guide the denoising process [16, 15]. There are two possible ways to obtain
the mask M: the attention maps of CA-S modules with a threshold [26]; or employing an off-the-shelf
segmentation model [41] on the source and generated videos. The obtained segmentation masks can
be leveraged to 1), alleviate the indistinction in foreground and background; 2), improve content
consistency between edited and source videos. To this end, we leverage mask-guided self-attention in
the main editing path to coordinate the editing process. Formally, we define:

T

m-attn(Q,K,V; M) = softmax(Qj%

+ M)V. (5)

Then the mask-guided self-attention:
SAmask := m-attn(Q, K, V; M) ® M, + m-attn(Q,K,V; M®) ® (1 — M,,),  (6)

where M/ M® € {—o0,0} indicate the foreground and background masks in the editing path
respectively, M,, € {0, 1} denotes the foreground mask from the motion-reference branch, and ® is
Hadamard product. In addition, we leverage the mask during the content preservation and motion
injection for the features obtained from the reconstruction branch and the motion-reference branch
(e.g., we replace Q™ with M,,, © Q™ + (1 — M,,) © Q).

4.4 T2V MODELS ARE ZERO-SHOT TI2V GENERATORS

To make our framework more flexible, we further derive a method to incorporate images as input
and synthesize high-quality video conditioned on both image and text-prompt. Different from some
image animation techniques [2], our method allows the user to guide the animation process with text
prompts. Concretely, we first achieve image-to-video (I2V) generation by: 1) transforming input
images with simulated camera movement to form a pseudo-video clip [49] or 2) leveraging existing
image animation approaches (e.g., SVD [2], AnimateDiff [23]) to synthesis a video with random
motion (which may not consistent with the text prompt). Then, we perform text-guided editing with
UniEdit on the vanilla video to obtain the final output video.

5 EXPERIMENTS

5.1 COMPARISON WITH STATE-OF-THE-ART METHODS

Implementation Details UniEdit can adapt to models [71, 9] with spatial attention, temporal
attention, and cross-attention layers. In this section, we build UniEdit upon LaVie [71] as an
instantiation to verify the effectiveness of our method. To demonstrate the flexibility of UniEdit
across different base models, we also implement the proposed method on VideoCrafter2 [9] and
exhibit the editing results in Fig. 9. For each input video, we follow the pre-processing step in LaVie
to the resolution of 320 x 512. Then, the pre-processed video is fed into the UniEdit to perform video
editing. It takes 1-2 minutes to edit on an NVIDIA A100 GPU for each video. More details can be
found in Appendix A.

Baselines. To evaluate the performance of UniEdit, we compare the editing results of UniEdit
with state-of-the-art motion and appearance editing approaches. For motion editing, due to the
lack of open-source tuning-free (zero-shot) methods, we adapt the state-of-the-art non-rigid image
editing technique MasaCtrl [5] to a T2V model [71] (denoted as MasaCtrl* in Fig. 5) and a one-shot
video editing method Tune-A-Video (TAV) [73] as strong baselines. For appearance editing, we
use the latest methods with strong performance, including FateZero [53], TokenFlow [20], and
Rerender-A-Video (Rerender) [78] as baselines.



Under review as a conference paper at ICLR 2025

—
=
]
e
3
2z
2

['doy "fq0 prSry]

Target Prompt: ... oil painting style ... Target Prompt: ... in a red suit ...

[Non-Rigid Obj. Rep.]

[uoueog;pow punoidydeq]

Target Prompt: ... Mario ... Target Prompt . in the park, in wmter

[SurSuey) uonow]

e
q
&l
on;
a9
<
=L
o
g
2
-]
=]
&

Target Prompt: ... lying ...

Figure 4: Examples edited by UniEdit. For each case, the upper frames come from the source video,
and the lower frames indicate the edited results with the target prompt. We encourage the readers to
watch the videos and make evaluations.
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Figure 5: Comparison with state-of-the-art methods for both video appearance and editing. It

shows that UniEdit achieves better source content preservation, and outperforms baselines in motion
editing by a large margin.

Evaluation Set. The evaluation set consists of 100 samples, including: a) 20 randomly sampled
video clips from the open-source LOVEU-TGVE-2023 [74] dataset, along with their corresponding 80
text prompts, and b) 20 videos from online sources (www . pexels.comand www . pixabay .com),
with manually designed prompts, as the baseline methods do not have an open-source evaluation set.
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Table 1: Quantitative comparison with state-of-the-art video editing techniques. Higher values
indicate better results.

Frame Consistency|Textual Alignment|| Frame Quality | Temporal Quality

Method CLIP  User! CLIP  User' ||Aesthetic Imaging| Subject Motion Temporal

Score  Pref. Score  Pref. Quality Quality [Consistency Smoothness Flickering
TAV [73] 95.39  3.71 27.89  3.28 51.97 49.60 93.10 93.27 91.48
MasaCtrl* [5]  97.61  4.30 2558  3.19 54.58 58.72 93.04 95.70 94.29
FateZero [53] 96.72  4.50 2730 349 5377  56.99 93.55 94.80 93.42
Rerender [78] 97.18  4.15 2794  3.55 5459 5797 93.08 95.57 94.36
TokenFlow[20] 97.02  4.56 28.58 341 52.60  60.65 91.97 95.04 93.50
UniEdit 98.35 4.70 3143 475 5825 6294 95.73 97.30 96.74
UniEdit-Mask 98.36  4.72 31.50 4.89 58.77 63.12 95.86 97.28 96.79

! The results may be subjective due to the limited sample size.

Qualitative Results. We present editing examples of UniEdit in Fig. 1, Fig. 4 (additional examples
in Fig. 17-22 of Appendix B.7). Please visit our project page for more videos. UniEdit demonstrates
the ability to: 1) edit in various scenarios, including motion-changing, object replacement, style
transfer, and background modification; 2) align with the target prompt; and 3) maintain excellent
temporal consistency. Additionally, we compare UniEdit with state-of-the-art methods in Fig. 5
(further comparisons in Fig.14,15,16 of Appendix B.6). For a fair comparison, we also migrated
all baselines to LaVie [71], using the same base model as our method. The results are presented
in Fig. 16. For appearance editing, we showcase two scenarios: non-rigid object replacement and
stylization. In object replacement, our method outperforms baselines in terms of prompt alignment
and background consistency. In stylization, UniEdit excels in preserving content. For example, the
grassland retains its original appearance without any additional elements. In motion editing, UniEdit
surpasses baselines in aligning the video with the target prompt and preserving the source content.

Quantitative Results. We quantitatively evaluate our method using two approaches: 1) CLIP
scores and user preference, as employed in previous work [73]; and 2) VBench [34] scores, a recently
proposed benchmark suite for T2V models. The summarized results are in Tab. 1. Following previous
work [73], we assess the effectiveness of our method in terms of temporal consistency and alignment
with the target prompt. Additionally, we conducted a user study involving 30 participants who rated
the edited videos on a scale of 1 to 5. We also utilize the recently proposed VBench [34] benchmark
to provide a more comprehensive assessment, which includes ‘Frame Quality’ metrics and “Temporal
Quality’ metrics. UniEdit outperforms the baseline methods across all metrics. Furthermore, the
mask-guided coordination technique introduced in Sec. 4.3 further enhances performance (see
Appendix B.2). For more detailed quantitative results, please refer to Appendix B.1&B.2&B 4.

5.2 ABLATION STUDY AND ANALYSIS
Table 2: Impact of various components.
How UniEdit Works? To better understand how

UnlEdlt works and reveal pur lnSIght on t.he Spa_ Content  Motion Structure Frame  Textual Frame
tial and temporal self-attention layeI‘S, we visualize PreservationInjection Control Similarity Alignment Consistency

the features in the SA-S and SA-T modules and 9054 2876 96.99
compare them with the magnitude of optical flow v 9728 2995  98.12
between adjacent frames in Fig. 6a, 8. It is evident Y 5 v 9130 3148 9808
that, in comparison to the spatial query maps (2nd 9.11 3137 98.12

p p query maps ( v v vV 9629 3143 98.09

row), the temporal cross-frame attention maps (3rd
row) exhibit a notably higher degree of overlap with
the optical flow (4th row). This indicates that the temporal self-attention layers encode inter-frame
dependencies and facilitate motion injection, while content preservation and structure control are
carried out in the spatial self-attention layers.

Output Visualization of the Two Auxiliary Branches. Recall that to perform motion editing,
we propose to transfer the targeted motion from the motion-reference branch and realize content
preservation via feature injection from the reconstruction branch. To verify the effectiveness, we
visualized the output of each branch in Fig. 6b. It is observed that the motion-reference branch
(4th row) generates video with the target motion, and effectively transfers it to the main path (3rd


https://uni-edit.github.io/UniEdit/

Under review as a conference paper at ICLR 2025

Synthesized
Video

Spatial
Query (SA-S)

Temporal
Attention (SA-T)

Optical Flow
Magnitude

smal

il large
(a) Visualization of attention features. (b) Visualization of each branch’s output.

Figure 6: (6a): Visualization of spatial query in SA-S (second row), cross-frame temporal attention
maps in SA-T (third row), and the magnitude of optical flow (fourth row). (6b): Visualization of the
video output of the , the and the motion-reference branch.
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(a) Ablation study on tg in Eq. 2. (b) Ablation study on ¢; in Eq. 4.

Figure 7: Ablation study on hyper-parameters.

row); meanwhile, the main path inherits the content from the reconstruction branch (2nd row), thus
enhancing the consistency of unedited parts.

The Effectiveness of Each Component. To demonstrate that all the designed feature injection
techniques in Sec. 4.1 & 4.2 contribute to the final results, we make a quantitative evaluation on
15 motion editing cases, as we utilize all three components in motion editing. As shown in Tab. 2,
editing with content preservation results in high frame similarity, suggesting that replacing value
features in SA-S modules can effectively retain the content of the source video. The use of motion
injection and structure control significantly enhances ‘Textual Alignment’, indicating successful
transfer of the targeted motion to the main editing path. Ultimately, the best results are achieved
through the combined use of all components.

Ablation on Hyper-parameters. We utilize content preservation in Eq. 2 to maintain the original
content from the source video. By varying the feature injection steps in Fig. 7a, we observe that
replacing the value features at a few steps introduces inconsistencies in the background (footprints
on the beach). In practice, we adhere to the hyper-parameter selection outlined in [5] (last row).
Simultaneously, we note that adjusting the blend layers and steps in Eq. 4 can effectively regulate
the extent to which the edited image adheres to the original image. For instance, in the stylization
demonstrated in Fig. 7b, injecting the attention map into fewer (15) steps yields a stylized output that
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Figure 8: Comparing optical flow with temporal attention maps. 1st row: Optical flow magnitude
between two consecutive frames; 2nd to 4th rows: Temporal attention maps (SA-T) at varying
resolutions and denoising stages.

Figure 9: Editing results with UniEdit on VideoCrafter2 [9].

may not retain the same structure as the input, while injecting into all 50 steps results in videos with
nearly identical textures but less stylization. Users have the flexibility to adjust the blended steps to
achieve their preferred balance between stylization and fidelity.

Results On Different T2V Model. To verify the generalizability of the proposed UniEdit, we
additionally implement our method on VideoCrafter2 [9]. The results are shown in Fig. 9. It shows
that UniEdit can effectively perform various video editing tasks on top of different T2V generation
models, which indicates the flexibility of the proposed method.

6 CONCLUSION AND LIMITATIONS

In this paper, we design a novel tuning-free framework UniEdit for both video motion and appearance
editing. By leveraging a motion-reference branch and a reconstruction branch and injecting features
into the main editing path, it is capable of performing motion editing and various appearance
editing. There are nevertheless some limitations. Firstly, we observe performance degradation when
performing both types of editing simultaneously. Secondly, since our work is based on T2V models,
the proposed method also inherits some of the shortcomings of the existing models, such as inferior
performance in understanding complex prompts. We exhibit the failure cases in Appendix B.5.
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Supplementary Materials

We organize the Appendix as follows:
e Appendix A: detailed descriptions of experimental settings.

e Appendix B: more experimental results, including:

* Quantitative ablation on hyper-parameter selection (Appendix B.1).

* Ablation study on mask-guided coordination (Appendix B.2).

* Observation and analysis on the proposed components (Appendix B.3).
* Analysis and comparison on inference time (Appendix B.4).

* Failure cases visualization (Appendix B.5).

* More comparisons with baseline methods (Appendix B.6).

* More editing results of UniEdit (Appendix B.7).

e Appendix C: Broader Impacts.

We encourage the readers to watch the videos on our project page.

A DETAILED EXPERIMENTAL SETTINGS

Base T2V Model. We instantiate the proposed method on LaVie [71], which is a pre-trained
text-to-video generation model that produces consistent and high-quality videos. To achieve a fair
comparison, we only leverage the base T2V model in LaVie and load the open-source pre-trained
weights for video editing tasks in the experiments. Note that the edited video clip could further be
seamlessly fed into the temporal interpolation model and the video super-resolution model to obtain
video with a longer duration and higher resolution.

Video Preprocessing. For each input video, we resize it to the resolution of 320 x 512, followed by
normalization, which is consistent with the training configuration of LaVie. Then, the pre-processed
video is fed into the base model of Lavie to perform video editing. To maximize the generation power
of LaVie, we set all input videos to 16 frames. For a source video, it takes 1-2 minutes to edit on an
NVIDIA A100 GPU.

Configurations. For real source videos, we inverse them with 50 DDIM inversion steps and perform
DDIM deterministic sampling with 50 steps for generation. For the generated videos, we use the
same start latent of synthesizing the source video as the initial noise z7 for the main editing path and
two auxiliary branches. We use the commonly used classifier-free guidance technique [29] with a
scale of 7.5.

Details of User Study. As a text-guided editing task, in addition to CLIP scores, it is crucial to
evaluate results through human subjective assessment. To achieve this, we utilized MOS (Mean
Opinion Score) as our metric and collected feedback from 10 experienced volunteers. We randomly
selected 20 editing samples and permuted results from different models. Volunteers were then tasked
to evaluate the results based on two perspectives: frame consistency and textual alignment. They
provided ratings for these aspects on a scale of 1-5. Specifically, frame consistency measures the
smoothness of the video, aiming to avoid dramatic jittering and ensure coherence between the content
of each frame. Textual alignment assesses whether the editing results adhere to the text guidance and
maintain the content of the source video. In the end, we computed the average user ratings for each
method as our final results.

As illustrated in Tab. 1, UniEdit shows the best performance on frame consistency. Regarding textual
alignment, UniEdit significantly outperforms all other baselines, demonstrating its capacity to support
diverse editing scenarios.
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Baselines. We implement all baseline methods with their official repositories. For MasaCtrl [5],
we adapt it to video editing by first setting the base model to a T2V model [71], then performing
MasaCtrl on all frames of the source video. Moreover, since most baselines use StableDiffusion (SD)
as the base model, we resize the source video to 512 x 512 to align with the default configuration of
SD, then feed it into the denoising model, which can maximize the power of SD.

B ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

B.1 QUANTITATIVE ABLATION ON HYPER-PARAMETER SELECTION

In practice, we empirically found set these values to fixed values, i.e., tg = 50, L = 10 (same as
MasaCitrl [5]) and t; = 25 can achieve satisfying results on most cases, and we further perform a
quantitative study when apglyin different hyper-parameters in Tab. 3&4.

Table 3: Quanfitative comparison on hyper-parameter selection.
Metric Frame Similarity ~ Textual Alignment  Frame Consistency
to=20,L =10 94.33 31.57 98.09
to =50,L =10 96.29 31.84 98.12
to =50,L =8 96.76 31.25 98.11

Table 4: Quantitative comparison on hyper-parameter selection.

Metric Frame Similarity Textual Alignment Frame Consistency
t1 =20 96.21 30.92 98.06
t1 =25 96.29 3143 98.09
t1 =30 96.50 31.04 98.08

B.2 ABLATION STUDY ON THE IMPACT OF MASK-GUIDED COORDINATION

To investigate the impact of mask-guided coordination, we begin by visualizing masks obtained
from 1) the attention map in CA-S modules; 2) the off-the-shelf segmentation model SAM [41],
followed by presenting both qualitative and quantitative results of implementing UniEdit with or
without mask-guided coordination.

As verified by previous work [26], the attention maps in CA-S modules contain correspondence
information between text and visual features. The underlying intuition is that the attention maps
between each word and the spatial features at point (7, j) indicate ‘how similar this token is to
the spatial feature at this location’. We visualize the text-image cross attention map alongside
the synthesized frame in Fig. 10. We observe spatial correspondences that align with the video
output from the attention map. For instance, areas with higher values of the token ‘man’ and ‘NYC’
correspond to the foreground and background, respectively. We further employ a fixed threshold
(0.4 in practice) to derive binary segmentation maps from the attention maps. For comparison,
we also display the segmentation mask obtained by point prompt on SAM. It’s observed that the
cross-attention mask is generally accurate and could serve as a reliable proxy in practice when an
external segmentor is not available.

We examine the impact of mask-guided coordination through both qualitative and quantitative results
across 4 settings: {w/o UniEdit, UniEdit w/o mask, UniEdit with mask from CA-S, UniEdit with
mask from SAM}. Qualitatively, shown in Fig. 11, the implementation of UniEdit significantly
enhances the consistency between the edited videos and the original video. The application of the
mask-guided coordination technique further improves the consistency of unedited areas (e.g., color
and texture). The quantitative results in Tab. 5 align coherently with this analysis.
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Table 5: Ablation on the proposed mask-guided coordination.

Metric Textual Alignment  Frame Consistency
TAV 27.89 95.39
MasaCtrl* 25.58 97.61
FateZero 27.30 96.72
Rerender 27.94 97.18
TokenFlow 28.58 97.02
UniEdit (w/o mask) 31.43 98.35
UniEdit (w CA-S mask) 31.49 98.33
UniEdit (w SAM mask) 31.50 98.36

Cross-Attention Maps Visualization

Iron Times Square
(a) Output frame. (b) CA-S Mask. o (c) SAM Mask.

Figure 10: Visualization of attention maps and masks in mask-guided coordination (Sec. 4.3). The
top row are attention maps corresponding to different tokens in CA-S modules, (a) is the final output
frame, (b) and (c) are the foreground/background binary mask obtained by employing a threshold on
the attention map of ‘Man’ token and point prompt segmentation with SAM, respectively.

(ﬁzckw kﬂ

Target Prompt. ..in wintr, in the park ... ] Target Prompt: ... dog ...

Figure 11: Qualitative editing results across 4 settings: w/o UniEdit (2nd row), UniEdit w/o mask
(3rd row), UniEdit with mask from CA-S (4th row), UniEdit with mask from SAM (5th row).

Source Video

‘w/o UniEdit

UniEdit

UniEdit
mask

UniEdit
+ SAM mask
e -

19



Under review as a conference paper at ICLR 2025

B.3 MORE OBSERVATION AND ANALYSIS ON THE PROPOSED COMPONENTS

Difference Between QK and V Features in SA-S Modules To comprehend why we can have
inhomogeneous QK and V and their differences, we visualized the results of swapping different
features (QK or V) in SA-S modules during style transfer tasks on the source video in Fig. 12a. As
can be seen, compared to editing with no feature replacement (2nd row), replacing QK in the 3rd row
results in the edited video adopting the same spatial structure as the source video. Simultaneously,
replacing V eradicates the style information in the 4th row, meaning the texture details from the
source video are utilized to replace the style depicted by the target prompt. To summarize, the query
and key features (in SA-S modules) dictate the spatial structure of the generated video, while the
value features tend to influence the texture, including details such as color tones.

Influence of Spatial Structure Control in Motion Editing We explored the role of spatial control
in motion editing. The proposed method synthesizes videos with larger modifications when removing
the spatial control mechanism on both the motion-reference branch and the main editing branch. We
visualized the results in Fig. 12b. It can be observed that although the motion-reference branch can
still generate the target motion without the control of spatial structure, the layout deviates significantly,
for example, the raccoon assumes a different pose and location. We regard this as a suboptimal
solution because, compared to the results presented in the 3rd row, the results w/o spatial structure
control modifies the object position of the source video, leading to a decrease in consistency between
the edited result and the source video.

Source Video
Source Video

KV Rep.

w/o Structure
Control

w/ QK Rep.
w/ Structure
Control

(a) Replacing different features in SA-S modules. (b) Motion editing w/ or w/o structure control.

Figure 12: Ablation on the proposed feature injection techniques. (12a): comparison of appearance
editing without feature replacement (2nd row), with QK replacement (3rd row), with V replacement
(4nd row); (12b): comparison of motion editing with and without the designed spatial structure

control mechanism.
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B.4 ANALYSIS AND COMPARISON ON INFERENCE TIME

We conduct a theoretical analysis of the additional cost of UniEdit and an empirical comparison with
baseline methods in terms of inference speed.

Theoretically, our method primarily involves feature replacement operations in attention modules,
achieved through forward hook registration and introducing minimal additional computation. There-
fore, the main difference between synthesizing a video from random noise and editing a video
with UniEdit lies in the batch size of the denoising process (i.e., vanilla generation: batchsize=1,
appearance editing: batchsize=2, motion editing: batchsize=3), and this process could be further
accelerated through multi-GPU parallel processing techniques. Additionally, we utilize LaVie [71] as
the base T2V model in the paper, which takes approximately 45 seconds to synthesize a 16-frame
video. Our method can be even faster when adapted to more efficient base models.

Empirically, UniEdit demonstrates comparable speed with baseline methods. The comparison of
inference time on a single 16-frame source video clip with a resolution of 320x512 on 1 NVIDIA
A100 GPU is as follows:

Table 6: Quantitative comparison on inference time of editing a single 16-frame video clip.

Method TAV  MasaCtrl* FateZero Rerender TokenFlow UniEdit ... UmEdl.t.
(appearance editing) (motion editing)
Inference time ~10min  ~90s ~130s ~110s ~100s ~95s ~125s

B.5 FAILURE CASES VISUALIZATION

We exhibit failure cases in Fig. 13. Fig. 13a showcase when editing multiple elements simultaneously,
and we observe a relatively large inconsistency with the source video. A naive solution is to perform
editing with UniEdit multiple times. Fig. 13b visualizes the results when editing video with complex
scenes, and the model sometimes could not understand the semantics in the target prompt, resulting
in incorrect editing. This may be caused by the base model’s limited text understanding power,
as discussed in [33]. It could be alleviated by leveraging the reasoning power of MLLM [33], or
adapting approaches in complex scenario editing [45].

a shark on the left and several godfish o}

‘ { Targe Prompt: ...
f 4

T

(a) Edit multiple elements simultaneously. (b) Complex scene editing.

Figure 13: Visualization of failure cases.

B.6 MORE COMPARISON WITH STATE-OF-THE-ART METHODS

Please refer to Tab. 7 for the quantitative comparison with the state-of-the-art methods on mini-
BalanceCC [19]. Please refer to Fig. 14 and Fig. 15 for more qualitative comparison with the
state-of-the-art methods. For a fair comparison, we also migrated all baselines to LaVie [71], using
the same base model as our method. The results are presented in Fig. 16, and they are found to be
inferior compared to those in Fig. 5 (based on Stable Diffusion).
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Source video

TokenFlow  FateZero MasaCtrl* TAV

Rerender

UniEdit

Table 7: Quantitative comparison with state-of-the-art video editing techniques on miniBal-

anceCC [19].

Figure 14: More comparison with state-of-the-art methods.

Motion Consistency | ~ Frame Quality | Temporal Quality

Method FVMD [43] Aesthetic Imaging Subject Motion Temporal

- Quality  Quality | Consistency Smoothness Flickering
TAV [73] 20602 55.95 59.59 88.94 91.84 89.20
MasaCtrl* [5] 16230 54.33 61.47 92.47 97.88 95.39
FateZero [53] 24339 53.07 64.27 89.81 94.71 92.11
Rerender [78] 21503 51.72 57.80 89.53 96.64 94.75
TokenFlow[20] 23798 54.86 66.78 92.21 95.64 93.77
UniEdit 14569 | 56.09 6785 | 95.74 98.07 96.62

B.7 MORE RESULTS OF UNIEDIT

More edited results of UniEdit are provided in Fig. 17-22

in Fig. 23.
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Source video

I Target Prompt: ... lego boy ... ¥ I Ta{rget Prompt: ... turnh;g around ... |}

TokenFlow  FateZero MasaCtrl*

Rerender

Figure 15: More comparison with state-of-the-art methods.

Appearance Editing (None-Rigid Obj. Rep.) Appearance Editing (Stylization)

4 Target Prompt: .. } Target Prompt: ... oil painting style ...

Source Video

TAV*

MasaCtrl*

TokenFlow* FateZero*

UniEdit (Ours) Rerender*

Figure 16: More comparison with state-of-the-art methods. We adapt the baseline methods to the
text-to-video model LaVie [71] and compare with our method (also based on LaVie).
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Source Video

Target Prompt: ... in a red suit ...

-
-~ ¢

Target Prompt: ... in a superman suit ...

Source Video

Target Prompt: ... oil painting style ...

Source Video

Figure 17: More appearance editing results of UniEdit.
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Source Video

Target Prompt: ... metal robotic ...
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Target Prompt: ... cute Iron Man ...
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Target Prompt: ... cute Spider Man ...
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Figure 18: More appearance editing results of UniEdit.
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Source Video

Target Prompt: ... crayon drawing ...

Figure 19: More appearance editing results of UniEdit.
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Source Video

Source Video

Target Prompt: ... oil painting ...

Figure 20: More appearance editing results of UniEdit.
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Source Video

Figure 21: More motion editing results of UniEdit.
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Source Video

Target Prompt: ... jumping ...

Target Prompt: ... lying ...
" . » \‘ g

Source Video

Target Prompt: ... standing ...

bbb

Source Video

Target Prompt: ... running ..
_— ‘-r\

L i 3
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Figure 22: More motion editing results of UniEdit.

Source Image

Video after 12V

. p z 4
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Target Prompt: ... cartoon style ...
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Figure 23: Results of text-image-to-video synthesis in Sec. 4.4.
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C BROADER IMPACTS

UniEdit is a tuning-free approach and is intended for advancing AI/ML research on video editing.
We encourage users to use the model responsibly. We discourage users from using the codes to
generate intentionally deceptive or untrue content or for inauthentic activities. It is suggested to add
watermarks to prevent misuse.
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